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Abstract. We study the termination of sole combinatory calculus, which
consists of only one combinator. Specifically, the termination for non-
erasing combinators is disproven by finding a desirable tree automaton
with a SAT solver as done for term rewriting systems by Endrullis and
Zantema. We improved their technique to apply to non-erasing sole
combinatory calculus, in which it suffices to search for tree automata with
a final sink state. Our method succeeds in disproving the termination of
8 combinators, whose termination has been an open problem.
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1 Introduction

Combinatory logic [15, 3] has been used in computer science as a theoretical
model of computation and also as a basis for the design of functional program-
ming languages [18, 13]. It can be viewed as a variant of lambda calculus, in
which a limited set of combinators, primitive functions without free variables,
is used instead of lambda abstractions.

Combinators in combinatory logic are defined as Zx1x2 . . . xn → e where
Z is a combinator, x1, . . . , xn are variables, and e is built from the variables
with a function application. It is known that a small set of combinators
can define a combinatorial calculus that is sufficient to cover all computable
functions. Well-known sets of such combinators are {S,K} and {B,C,K,W}
with Sxyz → xz(yz), Kxy → x, Bxyz → x(yz), Cxyz → xzy, and Wxy →
xyy [1].

The subject of this paper is sole combinatory calculus, which consists of
only one combinator. There have been several studies on sole combinatory
calculi. Waldmann [19] investigated the S combinator to provide a procedure
that decides whether an S-term, built from S alone, has a normal form and
further showed that the set of normalizing S-terms is recognizable. Probst and
Studer [14] proved that the sole combinatory calculus with the J combinator,
defined by Jxyzw → xy(xwz) is strongly normalizing; that is, no J-term
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Pxyz → z(xyz) P3xyz → y(xzy) D1xyzw → xz(yw)(xz) D2xyzw → xw(yz)(xw)

Φxyzw → x(yw)(zw) Φ2xyzw1w2 → x(yw1w2)(zw1w2) S1xyzw → xyw(zw)

S2xyzw → xzw(yzw) S3xyzwv → xy(zv)(wv) S4xyzwv → z(xwv)(ywv)

Fig. 1. Combinators and their reduction rules

has an infinite reduction sequence. Ikebuchi and Nakano [6] showed that
the sole combinatory calculus with the B combinator is strongly normalizing
and characterized by equational axiomatization for proving the looping and
non-looping properties of repetitive right applications.

This paper concerns the non-termination of sole combinatory calculi, where
termination means that no term has an infinite reduction. Let us say that a
combinator is terminating when the corresponding sole combinatory calculus
is terminating. Iwami [8] has investigated the termination of 37 combinators
introduced in Smulyan’s book [16] and has reported that 10 of them shown in
Fig. 1 are of unknown termination.

We disprove the termination of 8 of the 10 combinators. The main idea of
disproving the termination is to give a non-empty recognizable set of terms
closed under the reduction as Endrullis and Zantema have done [4]. They
showed that a SAT solver can find the corresponding tree automaton. We im-
prove their method by showing that it suffices to search for tree automata with
a final sink state in our setting and by reducing the number of variables in the
SAT problem. Our implemetation disproves the termination of 8 combinators.

2 Preliminaries

A signature (or alphabet) Σ is a non-empty finite set of function symbols, each
with a fixed natural number called arity (or rank)3. The set of all function
symbols of arity n in Σ is written as Σ(n). We may write f (n) for f ∈ Σ(n).
A function symbol of arity 0 is called a constant symbol. A set of variables is a
countably infinite set disjoint from Σ. For a set V of variables, a set of terms
overΣ, denoted by TΣ(V), is inductively defined as the smallest set S such that
V ⊆ S and t1, . . . , tn ∈ S implies f(t1, . . . , tn) ∈ S for every f ∈ Σ(n). The
set of variables occurring in t ∈ TΣ(V) is denoted by FV(t). In the rest of the
paper, the set V of variables is fixed and contains x, x1, x2, . . . as its elements.
A substitution is a finite map from variables to terms. We write dom(α) for
the domain of a substitution α. For a term t and a substitution α, we denote
by tα an instance of t, a term obtained by replacing every variable x in t
with α(x). Substitutions may be represented in the set notation as usual: we
write {x1 7→ t1, . . . , xn 7→ tn} for substitution α when dom(α) = {x1, . . . , xn}

3 We use the terminology of term rewriting systems, whereas definitions are given
alongside that of formal language theory for the readers, e.g., a tree and a rank in
formal language are called a (ground) term and an arity in term rewriting, respectively.
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and α(xi) = ti holds for each i and, in particular, ∅ for substitution α when
dom(α) = ∅. A term containing no variables is called a ground term, and the set
of ground terms is written as TΣ , i.e., TΣ = TΣ(∅). A context C is a term over
Σ ∪ {□} with a constant symbol □, called a hole, such that □ occurs exactly
once in C. For a context C and a term t, we denote by C[t] a term obtained
by replacing the hole in C with t. We write CΣ(V) for the set of contexts; in
particular, V is omitted from the notation if it is empty, i.e., CΣ = CΣ(∅). A
term s ∈ TΣ is a subterm of t ∈ TΣ if t = C[s] holds with some C ∈ CΣ . The set
of all subterms of t is written as Sub(t).

A term rewriting system (TRS) R overΣ is a set of rewriting rules of the form
l → r with l, r ∈ TΣ(V) where FV(r) ⊆ FV(l). A TRS R is said to be non-erasing
if FV(r) = FV(l) holds for every rule l → r ∈ R. A TRS R is said to be left-linear
if each variable in FV(l) occurs exactly once in l for every rule l → r ∈ R.
A left-linear TRS R is said to be orthogonal if every pair of two (possibly the
same) rules in R has no overlapping, which means that the left-hand side of
one rule is not unifiable with any non-variable subterm of the left-hand side
of the other rule. A rewrite relation →R over TΣ(V) induced by R is defined by
{(C[lα], C[rα]) | C ∈ CΣ(V), l → r ∈ R, α : FV(l) → TΣ(V)}. We write →∗

R for
the reflexive and transitive closure of→R. A term t is called a redex ofR if t = lα
holds for some l → r ∈ R and substitution α; that is, a redex means a reducible
part of a term. A term t is said to be in normal form with respect to R if there is
no term u such that t →R u; in other words, no subterm of t is a redex ofR. A set
of normal forms with respect to R is denoted by NF(R). A TRS R is terminating
or strongly normalizing if no infinite rewrite sequence t0 →R t1 →R t2 →R . . .
with ti ∈ TΣ(V) and i ∈ N exists. A TRS R is weakly normalizing if for every
term t there exists a term u ∈ NF(R) such that t →∗

R u holds. A rewrite step
s →R t is innermost, denoted by s →i

R t, if no proper subterm of the contracted
redex is itself a redex [12], that is, the relation→i

R is defined by a subset of→R

as {(C[lα], C[rα]) | C ∈ CΣ(V), l → r ∈ R, α : FV(l) → TΣ(V), Sub(lα) ⊆
NF(R)∪{lα}}. A TRSR is weakly innermost normalizing if for every term t there
exists a term u ∈ NF(R) such that t→i

R
∗u holds. A set S of terms is closed under

R if for every t ∈ S, t →R u implies u ∈ S.
A (non-deterministic bottom-up) tree automaton is a quadruple A = 〈Q,Σ,

F,∆〉 where Q is a finite set of states, F ⊆ Q is a set of final states, and ∆
is a set of state transition rules of the form f(q1, . . . , qn) ⇝ q with f ∈ Σ(n),
q1, . . . , qn, q ∈ Q. The set ∆ can be viewed as a TRS where ⇝ is used instead
of →. The arrow⇝∆ is used for the rewrite relation over TΣ∪Q induced by the
rules in ∆ where the subscript ∆ may often be omitted if no confusion arises.
We write ⇝∗ for the reflexive and transitive closure of ⇝. The set L(A, q) for
q ∈ Q is defined by L(A, q) ≡ {t ∈ TΣ | t ⇝∗

∆ q}. The set of terms accepted by
A is defined by L(A) ≡

∪
q∈F L(A, q). A state q is said to be reachable if L(A, q)

is not empty. A state q is called a sink state when, for every f ∈ Σ(n) (n > 0)
and q′, q1, . . . , qn ∈ Q with qi = q for some i, f(q1, . . . , qn) ⇝ q ∈ ∆ holds but
f(q1, . . . , qn) ⇝ q′ ∈ ∆ does not hold with q′ 6= q. When q is a sink state, it is
easy to show that t ∈ L(A, q) implies C[t] ∈ L(A, q) for every context C ∈ CΣ
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and every ground term t ∈ TΣ . Two tree automata A1 and A2 are said to be
equivalent if L(A1) = L(A2) holds.

3 Termination of sole combinatory calculus

A combinatory calculus is specified by certain kinds of combinators and
reduction rules for each combinator. A reduction rule for a combinator Z
has the form Z x1 . . . xn → e where e is built by combining x1, . . . , xn

with function application. One of the most familiar combinatory calculi is
given by the S and K combinators defined by S x1 x2 x3 → x1 x3 (x2 x3)
and K x1 x2 → x1. The calculus is well known to be Turing-complete in
the sense that these two combinators are sufficient to represent all com-
putable functions. Reductions in combinatory calculus are easily simulated
by a TRS using the set of constant symbols for combinators and a binary
function symbol @ for function application. For example, reduction rules for
the S and K combinatory calculus can be represented by a TRS consisting
of @(@(@(S, x1), x2), x3) → @(@(x1, x3),@(x2, x3)) and @(@(K, x1), x2) → x1,
which is obviously non-terminating because of the Turing-completeness of the
corresponding reduction system.

In this paper, we are interested in the question for sole combinatory calcu-
lus, which is built only by one combinator. We start with formal definitions of
several notions on the sole combinatory calculus in terms of term rewriting. For
Z is a combinator, we denote by ΣZ a signature consisting of a constant Z and
binary function symbol @. A Z-term, which is built only from Z in combinatory
calculus, is represented by a term in TΣ . A sole combinatory calculusRZ induced
by a combinator Z is a TRS over TΣZ

where RZ is a singleton set of a left-linear
rule of the form @(. . .@(@(Z, x1), x2) . . . , xn) → e with a term e built only from
@ and variables x1, . . . , xn. A combinator Z is said to be terminating if RZ is
terminating. It is known that B [6] and J [14] are terminating while O [9, 7, 4]
and S [19] are not.

The following lemma allows us to consider only the case of weakly inner-
most normalizing instead of terminating since the rule of sole combinatory
calculus is orthogonal.

Lemma 1 ([11, Theorem 11]). An orthogonal TRS R is terminating if and only
if R is weakly innermost normalizing.

The readers might recall a similar result shown by Church [2] that an
orthogonal non-erasing TRS R is terminating if and only if R is weakly
normalizing. Since we are concerned with non-erasing combinatory calculus,
this result may seem more convenient. However, in the context of the present
work, we intend to employ the above lemma because the ‘innermost’ condition
plays a crucial role in our method which will be detailed later.
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4 Disproving termination of combinators by tree automata

Endrullis and Zantema have proposed a procedure for disproving weakly and
strongly normalizing by finding tree automata that disprove termination of
arbitrary forms of left-linear TRSs. This section first explains how to disprove
termination using the search for tree automata, and shows that it is sufficient
to find a restricted form of tree automata to disprove the termination of
non-erasing combinators. Then, we present how to find such tree automata
with a SAT solver. Finally, we show the non-termination of 8 combinators with
our implementation of the method.

4.1 Disproving termination with tree automata

The idea of disproving termination of a TRS R by Endrullis and Zantema is
to find a non-empty set of reducible ground terms (i.e., not in normal form),
which is closed under the rules in R. It is easy to see that the existence of such a
set implies thatR is not weakly normalizing because any reduction from a term
in the set is always infinite. Endrullis and Zantema considered the case where
the set is recognizable by a tree automaton as defined below, though they did
not give a name to it.

Definition 2. A termination-disproving automaton (TDA) for a left-linear TRS R
is a tree automaton A = 〈Q,Σ,F,∆〉 such that (2-1) there exists a state q ∈ F
that is reachable, (2-2) L(A) ∩ NF(R) = ∅, and (2-3) t ∈ L(A, q) implies u ∈
L(A, q) for all q ∈ Q and t, u ∈ TΣ with t →R u.

It is easy to see that the set L(A) for a TDA A for R can disprove weak
normalizability of R: the conditions (2-1) and (2-2) allow us to choose a term
not in normal form, and the conditions (2-2) and (2-3) force any reduction from
the term to be infinite. The condition (2-3) is a bit strong in the sense that
it requires every set L(A, q) with q ∈ Q to be closed under reductions in R.
The last condition might be relaxed to require the closure property only for
final states in QF . However, we require it for all states in Q to make the SAT
solver–based disproof search easier as done by Endrullis and Zantema.

As we will see later, it is sufficient to find a TDAwith a sink state as the final
state. The restricted form of tree automata is defined as follows.

Definition 3. A termination-disproving automaton with a final sink (TDA-S) for
an orthogonal TRS R is a tree automaton A = 〈Q,Σ, {qF },∆〉with qF ∈ Q such
that (3-1) qF is sink and reachable, (3-2) L(A)∩NF(R) = ∅, and (3-3) t ∈ L(A, q)
implies u ∈ L(A, q) ∪ L(A) for all q ∈ Q and t, u ∈ TΣ with t →i

R u.

We assume here that R is orthogonal, which is stronger than left-linear,
because every sole combinatory calculus is orthogonal. A major difference
from TDAs is that a TDA-S has a sink state qF as the unique final state. The
sink state is reachable so that L(A) is non-empty. In addition, it requires the
closure property only under the innermost reduction and allows the reduction
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onto L(A). The latter relaxation corresponds to a minor improvement done by
Endrullis and Zantema where the closure property allows the reduction onto
terms accepted by the ‘larger’ states in the total order over states, which will
be used for reachability checking with Lemma 6. The following theorem states
that the existence of a TDA-S for an orthogonal TRS R implies that R is not
terminating.

Theorem 4. An orthogonal TRS R is not terminating if a TDA-S for R exists.

Proof. Let A = 〈Q,Σ, {qF },∆〉 be a TDA-S for an orthogonal TRS R. By
Lemma 1, it suffices to show that R is not weakly innermost normalizing. We
prove by contradiction that for all t ∈ L(A), no reduction sequence from t
reaches a normal form, which disproves the weak innermost normalizability
of R due to the non-emptiness of L(A) implied by the (3-1) condition of A.
Suppose that there exists a term such that a reduction sequence starting from
the term reaches a normal form. Let t ∈ L(A) be such a term which has the
shortest reduction sequence t = t0 →i

R t1 →i

R · · · →i

R tn with tn ∈ NF(R).
From the (3-2) condition, t is not in normal form, i.e., n > 0. From the (3-3)
condition with q = qF , t1 ∈ L(A) holds. Since we have a reduction sequence
from t1 ∈ L(A) which reaches a normal form, it contradicts the assumption
that the reduction sequence from t is the shortest one.

Wewill try to find a TDA-S (which has exactly one final state) to disprove the
termination of a sole combinatory calculus instead of a TDA. Since the disproof
search will be done by fixing the number of states and increasing it iteratively,
we have to show that the number of states of a TDA-S is not required to be as
large as that of a TDA. Note that we do not need to find a TDA-S equivalent to
a TDA if it exists. It is well-known that every non-deterministic tree automaton
can be converted into an equivalent one that has exactly one final state (by
introducing a fresh final state) but it may have one more state than the original
one. The following lemma guarantees that the number of states of a TDA-S is
not required to be larger than that of a TDA to disprove the termination of an
orthogonal TRS. The proof idea is to construct a TDA-S A from a given TDA A0

by forcing a final state of A0 to be the final sink state of A and removing states
that accept only terms whose subterm is accepted by the sink state.

Lemma 5. Let R be an orthogonal TRS. If a TDA A0 = 〈Q0, Σ, F0,∆0〉 for R
exists, then a TDA-S A = 〈Q,Σ, {qF },∆〉 for R also exists with |Q| ≤ |Q0|.

Proof. Let A0 = 〈Q0, Σ, F0,∆0〉 be a TDA for an orthogonal TRS R, where A0

satisfies the conditions (2-1), (2-2), and (2-3). Without loss of generality, all
states inQ0 are reachable; otherwise, we could remove unreachable states from
Q0. From (2-1) of A0, the set F0 is not empty, hence we can choose a final state
qF ∈ F0. Let LF ⊆ TΣ and QF ⊆ Q0 be defined by LF = {C[t] | C ∈ CΣ , t ∈
L(A0, qF )} and QF = {q ∈ Q0 | L(A0, q) ⊆ LF }, respectively. Note that qF ∈
QF holds in particular. Then we define a tree automaton A = 〈Q,Σ, {qF },∆〉
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with Q = (Q0 \QF ) ∪ {qF } and ∆ = ∆1 ∪∆2 where

∆1 = {f(q1, . . . , qn)⇝ q ∈ ∆0 | {q1, . . . , qn} ⊆ Q0 \QF , q ∈ Q} and

∆2 = {f(q1, . . . , qn)⇝ qF | f ∈ Σ(n), qF ∈ {q1, . . . , qn} ⊆ Q}

so that qF is to be a sink final state in A. Since |Q| ≤ |Q0| obviously holds, it
suffices to show that A is a TDA-S for R.

Before proving that A is a TDA-S for R, we show

(5-1) t ∈ LF if and only if t ∈ L(A, qF ),
(5-2) t ∈ L(A, q) implies t ∈ L(A0, q) for all q ∈ Q0 \QF , and
(5-3) t ∈ L(A0, q) implies t ∈ L(A, q) ∪ L(A, qF ) for all q ∈ Q0 \QF ,

for all t ∈ TΣ . These statements can be shown by simultaneous induction on the
structure of t. Suppose that t = f(t1, . . . , tn) with f ∈ Σ(n) and t1, . . . , tn ∈ TΣ .
On the (5-1) statement, we examine two cases according to whether ti ∈ LF

or not for each i. In the case where ti ∈ LF holds for some 1 ≤ i ≤ n, the
‘if’-statement of (5-1) is obvious from the definition of LF , hence we show the
‘only if’-statement. Since ti ∈ L(A, qF ) holds from the induction hypothesis,
we have t ∈ L(A, qF ) using a transition rule in∆2. Thus, the ‘only if’-statement
of (5-1) also holds. In the case where ti 6∈ LF holds for all 1 ≤ i ≤ n, we
first show the ‘if’-statement of (5-1). Assume t ∈ L(A, qF ) holds. Then, there
exists q1, . . . , qn ∈ Q such that f(q1, . . . , qn) ⇝ qF ∈ ∆ and ti ∈ L(A, qi) for
every 1 ≤ i ≤ n. If qi = qF holds for some 1 ≤ i ≤ n, then we have ti ∈ LF

from the induction hypothesis, hence t ∈ LF . If qi ∈ Q0 \ QF holds for all
1 ≤ i ≤ n, then the transition rule is in ∆1 and we have ti ∈ L(A0, qi) from
the induction hypothesis of (5-2) for all i. Using the same transition rule, we
have t ∈ L(A0, qF ), hence t ∈ LF . Therefore, the ‘if’-statement of (5-1) holds.
For the ‘only if’-statement of (5-1), assume t ∈ LF . Since ti 6∈ LF holds for all
1 ≤ i ≤ n, we have t ∈ L(A0, qF ) owing to the definition of LF . Then, there
exists q1, . . . , qn ∈ Q0 such that f(q1, . . . , qn) ⇝ qF ∈ ∆0 and ti ∈ L(A0, qi) for
every 1 ≤ i ≤ n. Note that ti 6∈ LF implies qi ∈ Q0 \ QF by the definition of
QF . Thus, the transition rule is in∆1 and we have ti ∈ L(A, qi)∪L(A, qF ) from
the induction hypothesis of (5-3). When ti ∈ L(A, qi) holds for all i, we have
t ∈ L(A, qF ) using the same transition rule. When ti ∈ L(A, qF ) holds for some
1 ≤ i ≤ n, we have t ∈ L(A, qF ) using the transition rule in ∆2. Therefore, the
‘only if’-statement of (5-1) holds.

On the (5-2) statement, assume t ∈ L(A, q)with q ∈ Q0 \QF , that is, q 6= qF .
Then, there exist q1, . . . , qn ∈ Q such that f(q1, . . . , qn) ⇝ q ∈ ∆ and ti ∈
L(A, qi) for every 1 ≤ i ≤ n. Note that qi 6= qF holds for all 1 ≤ i ≤ n because
of the construction of ∆. Since we have qi ∈ Q0 \ QF for every 1 ≤ i ≤ n, the
transition rule is in ∆1 and ti ∈ L(A0, qi) holds from the induction hypothesis
for every 1 ≤ i ≤ n. Using the same transition rule, we have t ∈ L(A0, q).
Therefore, (5-2) holds.

On the (5-3) statement, assume t ∈ L(A0, q) with q ∈ Q0 \ QF . Then, there
exist q1, . . . , qn ∈ Q0 such that f(q1, . . . , qn) ⇝ q ∈ ∆0 and ti ∈ L(A0, qi) for
every 1 ≤ i ≤ n. When qi ∈ QF holds for some 1 ≤ i ≤ n, we have ti ∈ LF by
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the definition of QF , hence ti ∈ L(A, qF ) holds from the induction hypothesis
of (5-1). Using a transition rule in∆2, we have t ∈ L(A, qF ). When qi ∈ Q0 \QF

holds for all 1 ≤ i ≤ n, the transition rule is in ∆0 and we have ti ∈ L(A, qi) ∪
L(A, qF ) from the induction hypothesis for all 1 ≤ i ≤ n. If ti ∈ L(A, qi) holds
for all i, then we have t ∈ L(A, q) using the same transition rule. If ti ∈ L(A, qF )
holds for some i, then we have t ∈ L(A, qF ) using the transition rule in ∆2.
Therefore, (5-3) holds.

Now we are ready to show that A is a TDA-S for R. Concerning the (3-1)
condition, the set LF is not empty since qF is reachable in A0 due to the (2-
1) condition of A0. Then we have qF is reachable also in A owing to (5-1). In
addition, qF is a sink state in A, hence the (3-1) condition holds for A.

The (3-2) condition is shown by contradiction. Suppose that there exists a
term t ∈ L(A) ∩ NF(R). Then we have t ∈ LF from (5-1), hence t = C[t0] holds
for someC ∈ CΣ and t0 ∈ L(A0, qF ). From t0 ∈ L(A0, qF ) ⊆ L(A0) and the (2-2)
condition of A0, we have t0 6∈ NF(R), and thus t = C[t0] 6∈ NF(R) holds. This
contradicts the assumption, hence the (3-2) condition holds for A.

Concerning the (3-3) condition, assume that we have t ∈ L(A, q) with q ∈ Q
and t →i

R u for some u ∈ TΣ . In the case of q = qF , we have t ∈ LF by
(5-1), hence t = C[t0] holds for some C ∈ CΣ and t0 ∈ L(A0, qF ). Since the
t0 is not in normal form by the (2-2) condition of A0 and →i

R is an innermost
relation, we have either u = C[u0] with t0 →i

R u0 ∈ TΣ or u = D[t0] with
someD ∈ CΣ . In the former case, we have u0 ∈ L(A0, qF ) by t0 ∈ L(A0, qF ) and
the (2-3) condition ofA0. Then u0 ∈ L(A, qF ) holds due to u0 ∈ L(A0, qF ) ⊆ LF

and (5-1). Since qF is a sink state in A, u ∈ L(A, qF ) holds. In the latter case,
u ∈ L(A, qF ) holds because t0 ∈ L(A0, qF ) ⊆ LF implies t0 ∈ L(A, qF ) by
(5-1) and qF is a sink state in A. Therefore, the (3-3) condition holds for A
in the case of q = qF . In the case of q ∈ Q0 \ QF , we have t ∈ L(A0, q) by
(5-2), hence u ∈ L(A0, q) holds by the (2-3) condition of A0. Since we have
u ∈ L(A, q) ∪ L(A, qF ) by (5-3), the (3-3) condition holds for A in the case of
q ∈ Q0 \QF .

Since we try to find a TDA-S in the ascending order of the number of
states as Endrullis and Zantema have done for a TDA, one of the TDA-Ss for
a given TRS with the smallest number of states can be found if it exists. It
might be possible to find a TDA-S even with a smaller number of states than
a TDA because of the relaxed closure property (3-3). Our experiment results
in Section 4.3 do not show such a case, though.

4.2 SAT encoding of termination-disproving tree automata

Endrullis and Zantema showed that the problem of finding TDAs can be
reduced to the boolean satisfiability problem (SAT, for short) by fixing the
number of states of tree automata. Althoughwe essentially follow their method,
we will present a method which can find a TDA-S more efficiently because of
the restriction of its form. The efficiency of the disproof search is improved not
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only by finding a TDA-S instead of a TDA but also by specializing their method
for non-erasing sole combinatory calculus.

We present our SAT encoding method to be self-contained, where the
differences from the method by Endrullis and Zantema (EZ method, for short)
are explicitly explained for each step. We first explain problem settings and
definitions used in our method, introduce propositional variables and their
meaning, and then show propositional formulas over them that must hold.

Problem setting and definitions Let Z be a non-erasing combinator whose
termination is to be disproved. Recall that the reduction rule ofZ is represented
by a singleton TRS RZ over ΣZ = {Z(0),@(2)}. Let lZ → rZ be the unique
rule of RZ where lZ = @(. . .@(@(Z, x1), x2) . . . , xMZ

) with some MZ ≥ 1 and
rZ is built from the binary function symbol @ and variables x1, x2, . . . , xMZ

so
that FV(lZ) = FV(rZ) holds for RZ to be non-erasing. We write UZ for the set
Sub(lZ)∪Sub(rZ). The left depth ld(t) of a Z-term t ∈ TΣZ

is defined by ld(Z) = 0
and ld(@(t1, t2)) = 1 + ld(t1). The left depth of a term is useful in determining
whether the term is redex or not. A Z-term t has the left depth MZ if and only
if t is a redex of RZ .

Let A = 〈Q,Σ, {qF },∆〉 be a TDA-S with a final sink state qF ∈ Q, which is
to be found if it exists. We fix the number of states as |Q| = N in our encoding.
We iteratively ask the SAT solver to find a TDA-S increasing N one by one,
starting with N = MZ + 1 because no automaton with less than MZ + 1 states
can recognize the existence of a redex of RZ . We use a function mldA : Q → N
defined by mldA(q) = mint∈L(A,q) ld(t). The function is total because the TDA-S
to be found has only reachable states.

Propositional variables Our SAT encoding involves three classes of proposi-
tional variables. The first one has the form of either v@(q1,q2)⇝q or vZ⇝q with
q1, q2, q ∈ Q, which identify ∆. These variables are expected to satisfy

v@(q1,q2)⇝q is true iff @(q1, q2)⇝ q ∈ ∆, for all q1, q2, q ∈ Q, and

vZ⇝q is true iff Z ⇝ q ∈ ∆, for all q ∈ Q.

This class of variables has been employed in the EZ method.
The second class of propositional variables has the form of either vq,m with

q ∈ Q \ {qF } and m < MZ or vq,rdx with q ∈ Q. They are expected to satisfy

vq,m is true iff m = mldA(q), for all q ∈ Q \ {qF } and m < MZ , and

vq,rdx is true only if L(A, q) ∩ NF(RZ) = ∅, for all q ∈ Q.

This class of variables is newly introduced in our method in order to check the
existence of redexes. Instead, the EZ method employs propositional variables
that represent reachability of states of a tree automaton obtained by product
construction of two tree automata, A and B, where B accepts all terms in
normal form of RZ .
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The third class of propositional variables has the form of vt,α,q with a term
t ∈ UZ , a substitution α : V(t) → Q \ {qF }, and a state q ∈ Q. Note that
the number of possible substitutions α is finite because UZ and Q are finite.
Therefore the number of this class of variables is also finite. These variables are
expected to satisfy

vt,α,q is true iff tα⇝∗ q

for all t ∈ UZ , α : V(t) → Q \ {qF }, and q ∈ Q. This class of variables has been
employed in the EZ method, with the difference of the domain of substitutions.
In their method, each substitution is defined over the set of all states including
final states, while our encoding excludes the final state from the domain of
substitutions. The difference makes the number of this class of variables much
smaller, which will reduce the number of clauses passed to the SAT solver. We
will explain later the reason why the final state can be left out in our encoding
method.

Besides the three classes of propositional variables, our implementation of
the proposed encoding method employs extra variables which is equivalent
to conjunction of the other variables. They are introduced in order for the
number of clauses to be smaller using a standard technique of Tseitin transfor-
mation [17], where sub-formulas are replaced by new propositional variables
to avoid exponential brow-up of the number of clauses. The original method
by Endrullis and Zantema may also have used the technique thought it is
not explicitly mentioned in their article. Their implementation is currently no
longer available, so we cannot be sure how they actually do it.

Propositional formulas Recall that a TDA-S A = 〈Q,ΣZ , {qF },∆〉 with |Q| =
N is to be found by the SAT solver. The Boolean values of the propositional
variables introduced so far exactly identify∆. It must also be ensured, however,
that there is no inconsistency in the valuation of propositional variables, and
thatA satisfies the TDA-S conditions. The propositional formulas to be satisfied
will be shown in sequence condition by condition. It is assumed that they will
eventually be combined together by conjunction and passed to the SAT solver
to find an appropriate valuation.

Firstly, the final state qF must be sink according to the (3-1) condition.
Hence the following propositional formulas must hold:∧

qF∈{q1,q2}⊆Q

(
v@(q1,q2)⇝qF ∧

∧
q∈Q\{qF }

¬v@(q1,q2)⇝q

)
(1)

All of these propositional variables are immediately forced to be assigned to
either true or false in the phase of unit propagation of the SAT solver. In
addition, the (3-1) condition requires that qF is reachable. Since we will find
a TDA-S with the smallest number of states, we assume that all states in Q are
reachable. The reachability of states can be paraphrased as the existence of a
total order on Q with appropriate properties as considered in the EZ method.
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We will employ the following lemma to specify the total order. The proof is
similar to that of the EZ method except that the final state is fixed as a sink
state in our setting. The details of the proof are found in the full version of this
paper [10].

Lemma 6. Let A = 〈Q,ΣZ , {qF },∆〉 be a tree automaton with a sink state qF .
Then, all states in Q are reachable if and only if there exists a total order <
on Q with maximal element qF such that for every q ∈ Q there exists either
Z ⇝ q ∈ ∆ or @(q1, q2)⇝ q ∈ ∆ with q1 < q and q2 < q.

Lemma 6 makes it easy to find a TDA-S in which all states are reachable.
Without loss of generality, we can fix an ordered sequence of all states in Q as
p1 < p2 < · · · < pN = qF (recall |Q| = N ) and force the states to satisfy the
property in Lemma 6. The restriction is directly encoded by∧

q∈Q

(
vZ⇝q ∨

∨
q1,q2<q

v@(q1,q2)⇝q

)
, (2)

which has been employed also in the EZ method, although our encoding differs
in that the ordered sequence of states should end with the unique final state.

Secondly, A must satisfy the (3-2) condition, which requires that A accepts
no terms in normal form. Since L(A) = L(A, qF ), a propositional formula

vqF ,rdx (3)

(which is just a unit clause) should hold. To ensure that the Boolean value of
this variable is valid, all of the propositional variables of the form vq,m or vq,rdx
should be properly assigned as follows. The propositional variables vq,m for
q ∈ Q \ {qF } and m < MZ are expected to satisfy m = mldA(q). It is easy to
see that mldA(q) can be effectively computed for each q ∈ Q from the transition
rules in ∆. The next lemma claims this fact as a logical statement so as to be
used for giving appropriate propositional formulas. The proof is found in the
full paper [10].

Lemma 7. Let A = 〈Q,ΣZ , {qF },∆〉 be a tree automaton with a combinator
Z where all states in Q are reachable. Then for every q ∈ Q and m ∈ N, (7-
1) mldA(q) = 0 if and only if Z ⇝ q ∈ ∆, and (7-2) mldA(q) = m > 0 if and
only if there is neither Z ⇝ q ∈ ∆ nor @(q1, q2)⇝ q ∈ ∆ withmldA(q1) < m− 1
and there exists @(q1, q2)⇝ q ∈ ∆ with mldA(q1) = m− 1.

We only need the lemma for non-final states though it holds even for the
final state qF because the propositional variables vq,m are given only for q ∈
Q \ {qF }. The statement (7-1) indicates that vq,0 for each q ∈ Q \ {qF } has an
appropriate Boolean value by the following propositional formula:∧

q∈Q\{qF }

(vq,0 ⇔ vZ⇝q) . (4)
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We could use the same propositional variable for vq,0 and vZ⇝q in an efficient
implementation, though. Additionally, the statement (7-2) indicates that the
propositional variable vq,m with m > 0 has an appropriate Boolean value by
the following propositional formula:∧

q∈Q\{qF }

∧
m<MZ

(vq,m ⇔ (¬vZ⇝q ∧ P1(q,m) ∧ P2(q,m))) (5)

where

P1(q,m) =
∧

0≤k<m−1

∧
q1,q2∈Q\{qF }

(
v@(q1,q2)⇝q ⇒ ¬vq1,k

)
and

P2(q,m) =
∨

q1,q2∈Q\{qF }

(
v@(q1,q2)⇝q ∧ vq1,m−1

)
.

The propositional variable vq,rdx for each q ∈ Q is expected to be true only if
L(A, q)∩NF(RZ) = ∅. The next lemma is used for giving propositional formulas
in order for the variables vq,rdx to have an appropriate Boolean value.

Lemma 8. Let A = 〈Q,ΣZ , {qF },∆〉 be a tree automaton with a sink state qF ,
let RZ be a TRS with a combinator Z, and let Q ⊆ Q be a set of states such that
for all q ∈ Q, (8-1) Z ⇝ q 6∈ ∆ holds, and (8-2) mldA(q1) = MZ − 1 holds if
there is @(q1, q2)⇝ q ∈ ∆with q1, q2 ∈ Q\Q. Then, L(A, q)∩NF(RZ) = ∅ holds
for every q ∈ Q.

The proof is found in the full paper [10]. Let Q ⊆ Q be the set of states q
such that vq,rdx is true. Lemma 8 guarantees that vq,rdx is true only if L(A, q) ∩
NF(RZ) = ∅ whenever Q satisfies the conditions (8-1) and (8-2), that is, the
following propositional formulas should be true: for (8-1),∧

q∈Q

(vq,rdx ⇒ ¬vZ⇝q) ; (6)

for (8-2),∧
q∈Q

∧
q1,q2∈Q\{qF }

(
vq,rdx ∧ v@(q1,q2)⇝q ∧ ¬vq1,rdx ∧ ¬vq2,rdx ⇒ vq1,MZ−1

)
. (7)

Finally, we need to ensure that A is almost closed under RZ in the sense
of the (2-3) condition. As the EZ method does, we use the following lemma
which gives a procedure to have the condition. While the EZ method employs
the existing results [5, Proposition 12], we give a proof of this lemma in the full
paper [10] because the (3-3) condition is different from the closure property.

Lemma 9. LetA = 〈Q,Σ, {qF },∆〉 be a tree automatonwith a sink state qF , and
letR be a left-linear TRS overΣ. Then, s ∈ L(A, q) implies t ∈ L(A, q)∪L(A) for
all q ∈ Q and s, t ∈ TΣ with s →i

R t if lα ⇝∗
∆ q implies rα ⇝∗

∆ q or rα ⇝∗
∆ qF

for all q ∈ Q, l → r ∈ R and α : FV(l) → Q.
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Recall that the propositional variable vt,α,q is true when a term t is accepted
with q ∈ Q if every variable x in t is substituted with a term accepted with
a state α(x). Following the EZ method, the procedure of computing the state
of each subterm is simulated by imposing relations among the propositional
variables. Unlike their method, we only need to consider the case where the
range of α is Q \ {qF } since the closure property always holds if α(x) = qF
for some x because qF is sink and RZ is non-erasing. This arrangement would
substantially reduce the number of propositional variables. For each subterm
t = @(t1, t2) ∈ UZ , we should have∧

q∈Q

∧
α:FV(t)→Q\{qF }

(
vt,α,q ⇔

∨
q1,q2∈Q

(
vt1,α[t1],q1 ∧ vt2,α[t2],q2 ∧ v@(q1,q2)⇝q

))
(8)

where α[t] stands for the substition α whose domain is restricted to FV(t). For
each leaf in the subterms UZ , we should have∧

q∈Q

((
vZ,∅,q ⇔ vZ⇝q

)
∧

∧
x∈FV(lZ)

(
vx,{x 7→q},q ∧

∧
q′∈Q\{q}

¬vx,{x 7→q′},q

))
(9)

where the former part indicates that we could use the same propositional
variable for vZ,∅,q and vZ⇝q. And then, the (3-3) condition requires the
propositional formula ∧

α:FV(lZ)→Q

(vlZ ,α,q ⇒ vrZ ,α,q ∨ vrZ ,α,qF ) . (10)

4.3 Applying to non-termination of specific combinators

We have shown how to construct propositional logic formulas for the existence
of TDA-S with fixed number of states for a sole combinatory calculus. We
have implemented the construction and input the obtained formulas to a SAT
solver to examine termination for combinators shown in Fig. 1, for which
termination is unknown. We confirmed that our method can efficiently find
a TDA-S compared to the method developed by Endrullis and Zantema for
a TDA. Note that their implementation is not currently publicly available,
so we have re-implemented it. For fairness, we have also applied the same
optimization (e.g., Tseitin transformation) as in the implementation of our
construction. Our implementation is written in OCaml and uses the Kissat SAT
solver. We also implement the ability to output the smallest term accepted by
the found TDA-S, thus allowing the output of a non-normalizable term.

The results of the examination for each combinator are shown in Table 1.
Due to page limitation, the details of the TDA-S obtained are found in the full
paper [10] with a found counterexample for termination. Here we only show
the number of states of the TDA-S, the size of the propositional logic formula
used (number of propositional variables and clauses), and the computation
time (the sum of encoding and solving time) including the attempts to fewer
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Table 1. Results of disproving termination of combinators given in Fig. 1.

EZ method Our method
#Q #vars #clauses time (s) #Q #vars #clauses time (s)

P 4 15,648 75,237 0.71 4 7,116 33,543 0.22
P3 6 161,544 793,351 11.5 6 96,058 469,233 5.6
D1 6 936,810 4,594,129 97.0 6 462,528 2,264,943 32.6
D2 6 936,810 4,594,129 96.6 6 462,528 2,264,943 32.9
Φ 7 1,975,302 9,741,173 260.6 7 1,099,527 5,416,581 108.3
Φ2 – — — — 9 55,695,683 276,052,931 39,268.4
S1 7 1,975,302 9,741,173 262.1 7 1,099,527 5,416,581 111.6
S2 6 745,002 3,655,825 81.6 6 379,278 1,857,693 30.3

states. The ‘EZ method’ column shows the results of (our re-implementation
of) the original method by Endrullis and Zantema; the ‘Our method’ column
shows the results of our construction method introduce in the present paper.
The EZ method failed to find a TDA for Φ2 within 24-hour computation.
Note that the number of propositional variables and clauses is the same for
different combinators. This is because they depend only on the number of
states, the number of variables in the left-hand side of the combinator’s rule and
the number of subterms in the right-hand side. A major improvement in our
method is a reduction of the number of variables of the form vt,α,q by restricting
the range of α, which is the most significant part of the SAT encoding. The
number of possible substitutions is reduced from |Q|N to (|Q| − 1)N , where N
is the number of variables in the left-hand side of the rule. Our method can
indeed generate less propositional logic formulas than the original one, and
also succeed in disproving the termination of more combinators. Both method
failed to find the disproof of termination for the remaining combinators S3 and
S4 in Fig. 1. We have confirmed that their termination cannot be disproven by
a TDA-S with at most 9 states.

5 Concluding remark

We have proposed a method to disprove the termination of sole combinatory
calculi with tree automata by extending the method proposed by Endrullis and
Zantema. Specifically, we have shown that a tree automaton with a final sink
state is sufficient to disprove termination of non-erasing combinators. We have
succeeded in disproving the termination of 8 combinators which is unknown
of their termination found in Smullyan’s book. The remaining two combinators
S3 and S4 still have unknown termination. We may need more improvement
to disprove their termination. However, our method in which termination is
disproved by a tree automaton with a final sink state may be applicable to other
non-erasing term rewriting systems. It would be interesting to investigate how
effectual our method is in more general settings.
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